
Suppose we want to create a warning light for a photographic darkroom that indicates when there

is too much light present (not very much!).

We have this board with a light sensor and a red LED that might be suitable for use in a darkroom.

Could we build a warning sensor for this application?

Recent pain
A lab-inspired example:

read

write

repeat

6 / 16

Slightly less pain
A script we can run repeatedly:

from engi1020.arduino.api import *

Read the current light level (port A6)
light = analog_read(6)

Turn the LED (port D4) if light is bright
if light > 400:
 digital_write(4, True)
else:
 digital_write(4, False)

... but there must be a better way!

7 / 16

We could simplify this if statement as follows:

digital_write(4, light > 400)

Remember flowcharts?
Term 3 promotion:

different from

Engineering One (see

exercise 3)

also not the whole story!

8 / 16

In the previous two lectures, we saw that the control flow of a program can be changed through the

use of if statements. We used the example of a student's progression through Term 3 of an

Engineering discipline to show how we can choose to follow one path of control flow or another

based on a condition. However, there is more to control flow than simply choosing between two (or

more) alternative paths!

http://localhost:10200/lecture/8/%7B%7B%%20ref%20%22/exercise/3%22%20%%7D%7D
http://localhost:10200/lecture/4
http://localhost:10200/lecture/5

A bigger flowchart
What's different?

lots of terms!

each is essentially the same

can we describe this process more abstractly?

9 / 16

Previously, we considered how a flowchart can be used to model a student's promotion decision in

a single term. However, the Engineering program is more than just one term! The flowchart to the

right shows something a bit more realistic: a student's progression through all of the academic

terms of their Engineering discipline.

Notice that the only difference between each term is which term it is. That is, if we could abstract

away the detail of which term we are currently in, calling it something like term instead, we

could treat every term in exactly the same way. We could then write a description of "how a term

works" without having to know which term it is, and then we could repeat this procedure for each

term from three to eight.

http://localhost:10200/lecture/flowcharts/whole-discipline.png

Recall:
Conditional control flow

either do this or else do that, based on a condition

Looping

do this over and over while a condition is satisified

10 / 16

We said that there are two major ways of directing control flow in a program:

we can choose to execute one bit of code or another, based on some condition (conditional
control flow) and

we can execute a bit of code over and over while a condition is met (looping).

In this portion of the course, we will see the second form of control flow: looping while a condition

is met.

A more compact
representation

The same process!

What's different?

abstract term description

repeating control flow

A loop!
11 / 16

If we change the description of each term to use the variable instead of an explicit term number,

we can represent the whole program as shown here. Now there is one description of "a term", and

we simply repeat it over and over. This is called looping, and there are ways of doing this in

every programming language .

Note, in particular, three key aspects:

1. we set up the loop by initializing the value (start in Term 3),

2. we check a condition every time we go through the loop to see if we're done yet and

3. we execute the loop and update the value of every time we go through it.

http://localhost:10200/lecture/flowcharts/program-loop.png

The while loop
Around and around...

while condition:
 # execute some statements!
 x = an_assignment()
 print(something)

condition: still a

Boolean expression

beware the infinite loop

12 / 16

https://en.wikipedia.org/wiki/Apple_Campus

Example: factorial
Concrete examples:

Abstract definition:

13 / 16

These equations are very concrete: we can actually evaluate both sides of the equation and check

that it's true. However, such concrete statements of truth are not very widely applicable! We would

like to have a more abstract solution: how can we find the factorial of any positive

integer?

This definition has two parts:

1. the general case: how to compute a factorial abstractly for most numbers and

2. the base case: what to do in a specific, concrete case.

This is also how proof by induction works: you prove that something is generally true for as long

as it's true for , then you find an example of an where you can prove it using other means.

Then, you've proved your theorem from that value of up to infinity! These kinds of problems ---

with a general case and a base case --- are also very amenable to implementation in a

computer program using loops .

Factorial pseudocode
The factorial of is:

let = 1

as long as :

Can you convert this into Python?

14 / 16

Another example
I'm thinking of a number

15 / 16

