
Last time:
Logic

propositions

operators

expressions

Truth table homework

2 / 27

De Morgan's Laws
Expression negation

More complex example:

3 / 27

It's often the case that we have a complex logical expression and we need to find its opposite.

Say that it's safe to land an aircraft if the landing lights are on, the gear is down and ATC has given

permission to land. What's the opposite of that logical expression? If any of those

conditions are not met, it is not safe to land .

Previously:

Expressions

Values and operations that evaluate to a value

4 / 27

Values
Literals

integer literals (e.g., 42, 1_000_000)

floating-point (real-valued) literals (e.g., 3.14, 1e6)

imaginary literals (e.g., 3.14j)

string literals (e.g., 'hello')

Boolean (logical) literals (e.g., True)

5 / 27

Operations
Arithmetic operators ✅

Function calls ✅

Logical operators

Comparators

6 / 27

Logical operators
Boolean operands and result

Operator Kind Evaluates to true iff:

and Binary both operands are true

or Binary at least one operand is true

!= or ^ Binary exactly one operand is true

not Unary the operand is false

7 / 27

Operator Operation

< Less than?

> Greater than?

<= Less than or equal to?

>= Greater than or equal to?

== Equal to?

!= Not equal to?

Comparators
Evaluate to True
or False

Logical or Boolean

values

8 / 27

Operations
Arithmetic operators ✅

Function calls ✅ (for now)

Logical operators ✅

Comparators ✅

9 / 27

Operator Descr.

() Parens

x(args...) Call

** Expon.

+x, -x, ~x Unary

*, /, //, % Mult.

+, - Add.

Operator Descr.

<, <=, >, >=, !=, == Comp.

not

and

or

Operator precedence

10 / 27

A more complete order of operations (including operators that we will only get to later in the

course) can be found here:

Operator Description

() Parentheses

x[i], x[i:j], x(args...),

x.attribute
Subscription, slicing, call, attribute
reference

** Exponentiation

+x, -x, ~x Unary positive, negative, bitwise not

*, @, /, //, % Multiplication

+, - Addition and subtraction

<<, >> Shifts

& Bitwise and

^ Bitwise xor

| Bitwise or

in, not in, <, <=, >, >=, !=, == Comparisons and membership tests

not Boolean not

and Boolean and

or Boolean or

if - else Conditional expression

= Assignment

The absolute full details can be seen at

https://docs.python.org/3/reference/expressions.html#operator-precedence, but that includes some

operators that we won't even get to in this course.

https://docs.python.org/3/reference/expressions.html#operator-precedence

Variables!

... in mathematics and in programming, being in some

ways similar and in others different

and now:

Variables
We previously used variables:

>>> from math import *
>>> pi
3.141592653589793
>>> 2j * pi
6.283185307179586j

angle*6*E*I/(x*(3*L**2-3*L*x+x**2))

(angle*(6*E*I))/((3*L**2-3*L*x+x**2)*x)

(6*E*I*angle)/(x*((3*(L**2))-(3*L*x)+(x**2)))

(angle*6*E*I)/(3*L*L*x)-(3*L*x*x)+(x*x*x)

12 / 27

Making variables
But where do variables come from?

First: what are variables?

in mathematics

in programming

13 / 27

Mathematical variables

 is a placeholder

 can be substituted for :

Statement of truth: is the same as

14 / 27

You should already have some familiarity with the concept of variables from mathematics. In math,

we describe variables using "let" statements, e.g., . In this usage, the name is a

placeholder for the value , i.e., wherever you see the variable you can substitute in the

value instead. If you wanted to express a changing value of , you might use names like or

, which are clearly related but are in fact different names : is not the same variable as

.

Computer programming
Variable: place in memory that holds a value

A variable has:

a name

a stored value

which has a type

which can change!
15 / 27

In computer programming, variables are a related but slightly different concept.

Variables in programming languages, like in mathematics are names that can be used to refer to

values. Unlike mathematics, however, programming variables do not refer directly to values but

rather than places in memory that hold values . For example, the image to the right

depicts three integer values (42, 17 and 54) being held at three different locations in memory. It is

worth noting a couple of things about these variables:

1. we refer to each one by a name,

2. we talk about each one in terms of a type (integer vs real vs ...),

3. each has a specific size in memory (which depends on the type) and

4. each has a defined place in memory.

Show the type() function

Creating variables
First (real) use of Python statements*

n = 42

This defines:

the name of the variable (n)

the initial value stored in the variable

A Python file (or "script") is a series of statements that can be run one after the other.
16 / 27

Initial value?
Mathematically invalid:

Programming variables can change value:

n = 1
n = 2

17 / 27

Exercises
1. In a Python interpreter, define four variables:

one containing an integer

one containing a floating-point number

one containing a string

one containing a Boolean value

2. Change their values; check their types with type()
18 / 27

Variables and types
Strictly speaking:

variables don't have types, values do

when someone says, "the type of a variable", their more

precise meaning is... the type of its current value

19 / 27

Types... so far...
Give two examples for each of:

Type Used for

bool Boolean (true/false) values

int "Whole" things

float Real numbers

complex Complex numbers

str Names, arbitrary-length text
20 / 27

Type conversions
We've see type() (which does what, again?)

How about converting values to different types?

Why would we want to do this?

How would we do this?

21 / 27

Demonstrate:

type()

int()

round()

float()

str()

Example
name = input('What is your name? ')
quest = input('What is your quest? ')
v = input('What is the average airspeed velocity of an unladen swallow? ')

How long will it take the swallow to fly 792 m?

Type conversions are very useful!

22 / 27

Show error from 792 / v without type conversion

Monotony and tedium
Speaking of useful...

re-writing the same statements over and over is tedious

programming's supposed to make life less tedious!

enter the script mode of programming

23 / 27

A Python script is named this way because

Demo how to create and run a script with IDLE and Thonny.

Python scripts
Copyright (c) 2020 Jonathan Anderson
Permission is granted to copy and modify this code for any purpose.
#
This is an example of a simple Python script for questing.

First, gather some basic information from the user.
name = input('What is your name? ')
quest = input('What is your quest? ')
v = input('What is the average airspeed of an unladen swallow? ')

Greet the brave dame or knight.
print(f'Greetings, brave {name}!')

Convert speed into a floating-point number and calculate quest time.
v = float(v)
print(f'Your quest for {quest} will be aided when the swallow flies 792 m.')
print(f'This should take {792 / v} s.')

24 / 27

What can we see in this file (which is available as python.py)?

comments

copyright

type conversion

variables

http://localhost:10200/lecture/4/python.py

What we just saw
Comments

Helpful descriptive text for people, not the computer!

Everything from # to the end of the line

Copyright

writing code is a creative act

more like an English assignment than Math!

25 / 27

What's next?
Write a Python script!

take some input, compute something, produce output

good preparation for exercise 2

26 / 27

