
Question
What does "high level" mean?

bad hacker jargon in movies: "high level encryption"

news: "a high-level briefing from a high-ranking source"

Q: What does it mean to be high-ranking?

in charge of a lot of people / stuff

have to pay attention to the big picture and long term
2 / 25

Sometimes leadership means digging into details, because the details matter, but if a leader spends

all of their time digging into details, they'll never be able to focus on big-picture stuff like strategic

direction and vision.



High- vs low-level
Typically relative terms

High(er) level:

Bigger picture, fewer details (more abstract)

Low(er) level:

More focused, more details (more concrete)

3 / 25



Words of caution
These terms are relative and not absolute

Abstractions leak

Imperfect but useful

4 / 25

There is a myth that you can have a clean separation between high- and low-level thinking.

In organizations, everyone needs some idea of the big picture (what we're doing and why
we're doing it), and the people at the top can't be hermetically sealed off from how the
organization actually works on a day-to-day basis.

In technology, abstractions are leaky. I can have a high-level abstraction for "a screen to
display things", but that screen will behave very differently if it's an OLED on a Grove kit
or a phone screen, or a tablet screen, or a laptop or a 4K 27" display!

This way of categorizing the world is imperfect and can be messy, but it is still very

useful .



Top-down design
a.k.a., functional decomposition

a.k.a., specification refinement

Figure out the big-picture requirements

What does this thing we're designing need to accomplish?

What is it that our users need?

Break into problems we can actually solve (iterative)

5 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

6 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

7 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

8 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

9 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

10 / 25



Example

MR 1.3

Using GNSS-R,

provide data relating

to the significant

wave height with

large coverage and

high temporal

resolution

11 / 25



Example flow-downs
Using GNSS-R: need to receive and interpret GNSS signals

(both original and reflected)

GNSS receiver

radio receiver(s)

something to interpret reflected GPS signals

some way to store the resulting data

12 / 25



Example flow-downs
provide data: need to transmit, store and provide access to

data

on-satellite storage

communication with ground

storage on the ground

public interface to data

13 / 25



Example flow-downs
significant wave height: drives interpretation of GNSS signals

algorithm(s) to estimate wave heights

impacts on specifications of receivers, etc.

14 / 25



Example flow-downs
large coverage and high temporal resolution: impacts on

designs of antenna, receiver, etc.

antenna and receiver must support large coverage

whole system must be ready to receive more data quickly

(implications for how data is passed from one system to

another, how long each system can take, etc.)

15 / 25



Result
High-level system "block diagram":

set of components

what those components do (very abstract description)

relationships among them (communication)

Then keep going!

Break systems into subsystems, subsystems into smaller

subsystems, until they're small enough to implement 16 / 25



Functional decomposition
Break a problem down into smaller parts

Keep going until we reach functions

functions that haven't been written yet!

functions whose behaviour we can specify

17 / 25



Contracts
Design by contract:

agree on what code does before how

write clear preconditions, postconditions and invariants

check with assertions

18 / 25



Preconditions
Things your code can assume to be true

def geometric_mean(values):
    """Compute the geometric mean of an iterable collection of values.

    Parameters
    ----------
    values
        a collection of non-negative numbers
    """

your code will do something iff preconditions are met

if not... all bets are off!
19 / 25

If a pre-condition is violated, your code is allowed to do anything: return the wrong answer, throw

an exception (we'll learn about those in Terms 3 and up), halt and catch fire...

https://en.wikipedia.org/wiki/Halt_and_Catch_Fire_%28computing%29


Postconditions
Things your code must make true

def foo(xs):
    """Do something.

    Postcondition: xs will have an even number of values

    Returns the number of values that foo the wibble (>= 0)
    """

iff all preconditions are met, your code is responsible for

ensuring that the postconditions are met

20 / 25

This code example has two postconditions: one is explicitly noted using the word "postcondition",

but the one about the return value is also a postcondition!



Invariants
Things that must always be true

act as preconditions and postconditions

mostly relevant to things that keep state (objects,

modules with global variables)

good example: a Student object's name is not None

bad example: a Student object's name never chagnes

21 / 25

This example of a bad invariant is something that doesn't relate to the way students actually work:

it's a lazy  assumption designed to make the programmer's life easier  rather

than to make the user's life better . Other lazy assumptions include:

everyone has a first name and a last name

everyone goes by their first name



So what?
What do we do with these things?

1. Identify them and state them clearly

2. Question them and let clients question them

3. Check them:

def sqrt(x):
    """[...]
    x : a non-negative number
    """

    assert x >= 0

22 / 25

An assertion is an excellent way of both documenting  your assumptions and also

enforcing  them. Instead of silently corrupting data (as can often happen when your

implicit assumptions are violated), an assertion will bring the issue to the fore and force you

to deal with it .



Design by contract
Clearly related to test-driven development (TDD)!

top-down refinement of specifications

specification-driven preconditions, post-conditions and

invariants

specification-driven testing

... all of which can happen before you write any code!

23 / 25



Example
Poker assignment from a previous year:

given two hands represented by 5-tuples of strings:

each string is value + ' ' + suit

value is 'A', 'K', 'Q', 'J', '10', '9', ...

suit is 'C', 'D', 'H', 'S'

return 1 or -1 if one hand wins; return 0 if they tie

24 / 25

You'll see in the video explanation, solving this problem provides a great opportunity for breaking a

big problem down into smaller parts and solving those parts independently.

http://localhost:10200/assignment/old/poker
https://www.youtube.com/watch?v=N0FUjNBGZFk?t=7m48s

