Previously:
Ordered collections:
o [ists (flexible, mutable)
e tuples (simple, immutable)
e arrays (fixed-size, homogeneous, high-performance)

Unordered collections: sets

Today:
Dictionaries
¢ sophisticated associative collection
e semantics
* syntax

e usage

Tinding things in collections

def find(needle, haystack):

value haystack:

value == needle:
print('Found it!"')

print("Didn't find it.")

find('Jon', ['Alice', 'Bob', 'Charlie', 'Diana'l)
find('Diana', ['Alice', 'Bob', 'Charlie', 'Diana'l)

How long does this take?

How about in an array of 40 M elements? 40 B?

4/19

Naming things in collecti

sid = int(input('Enter student ID> '))

index =
i, enumerate(something_that_returns_students())
s.id == sid:
index = i

print('Found student at index:', index)

What is the "name" for the student in this collection?

print(students[i])

students[i].name()
students[i] = ...

5/19

That 3 odd...

Does it matter whether you're at index 12 or 93?
¢ doesn't matter whether you registered first, tenth or last
e "Student in seat 4" not a meaningful way to refer to you!
What's a better way to refer to you?
* name

e student ID

finother type of collection?
Sometimes the order of things doesn't matter

Sometimes we need a sensible name for things

There are only two hard things in Computer Science:
cache invalidation and naming things. — Phil Karlton

@ Leon Bambrick
@secretGeek

There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors.

Python dictionary

A dictionary holds named values
e Python type: dict

it's an unordered collection

every valuein a dictionary also has a key (a name)

can look up values by key

can iterate over keys, values or both

Dictionary syntax
Create a dictionary:

students = {
20012 : 'Jonathan Anderson',

202412345: 'Somebody New',

¢ enclosed in curly braces (not brackets or parentheses)
e comma-separated items

e each item has a keyand a value

9/19

Dictionary values

Can use any type for values:

csf_rooms = {
"Alice Faisal", -y

Computer lab", 5 .6,

"Workstations", 4 4.9,
"VISOR lab",

"Jonathan Anderson",

10/19

Dictionary keys

Can use many types for keys:

population { checkers an_error {
24_848, (@, 0): 'red', [0, 0]: 'whut',
Brook': 19_886, (@, 2): 'red', }
'Gander': 11_054,

'Grand Falls-Winsor': 13_725, (7, 1): 'black',
'"Mount Pearl': 24_284, (7, 3): 'black',
'Paradise’
"St. John'

Population data is a bit stale: it's as of the 2011 census.
11719

https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/hlt-fst/pd-pl/Table-Tableau.cfm?LANG=Eng&T=302&SR=1&S=3&O=D&RPP=9999&PR=10

YValid dictionary keys
TypeError: unhashable type: 'list' —???
Keys must be hashable
Python's immutable containers are hashable

e tuples are OK (if its elements are hashable), lists are not

* strings are OK, arrays of characters are not

12719

https://docs.python.org/3/glossary.html#term-hashable

Tndeving

Can access individual elements just like indexing:

13719

Tterating over dictionary keys and values

By default, you iterate over keys:

sid students:
print(sid, ':', students[sid])

city populations.keys():
print(city, ':', populations[city])

Can also iterate over values

pulations.values():
print(pop)

14719

Tterating over dictionary items
Can also iterate over items (key, value tuples)

sid, student students.items()
print(sid, ':', student)

city, pop populations.items()
print(city, ':', pop)

Ordering may not be preserved*

* Fine print (not on the exam): Python 3.7+ preserves insertion order in the dict type, but
many Python packages that interact with dict don't assume that ordering will be preserved,

so they may not work to preserve it in the data you import or export.
15719

Depending on the version of Python and other factors, it's possible that iterating twice over a

dictionary might give you a different order each time.

ﬂ (] l. l. []
Helpful when name more important than order
Allow very fast search by key

e no need to look at all 40 B records!

¢ how? details will come later (ECE 4400 or equivalent)

Basis for lots of code in Python packages you may use

Eample with pandas*

COVID-19 cases in Newfoundland and Labrador

pandas frames behave like dicts:

Total cases by category

W Deceased
200 Recovered
Active

pandas pd

0
4 Mar 202019 Mar 20224 Mar 20229 Mar 20203 Apr 2020 8 Apr 2020

data = pd.read_csv('covid-data.csv') New and total cases

— Total
New

data['Total'] = datal'New'].cumsum()
data['Deceased'] = datal 'Deaths'].cumsum()
datal 'Recovered'] = datal 'Recoveries'].cumsum()

14 Mar 202019 Mar 20224 Mar 20229 Mar 20203 Apr 2020 8 Apr 2020

* See the rest of the code as well as the data it operates on
17719

https://pandas.pydata.org/
https://gist.github.com/trombonehero/b7b2ec2667dab2bf3bb09399984a8046
https://docs.google.com/spreadsheets/d/1vyBnGK-3c5e9wsL5e278NR1G3uTqdUH6wOwCRzgUb4I

Summary:
Dictionaries
¢ sophisticated associative collection
e semantics
* syntax

 usage

