
Previously:
Ordered collections:

lists (flexible, mutable)

tuples (simple, immutable)

arrays (fixed-size, homogeneous, high-performance)

Unordered collections: sets

2 / 19

Today:
Dictionaries

sophisticated associative collection

semantics

syntax

usage

3 / 19

Finding things in collections
def find(needle, haystack):
 for value in haystack:
 if value == needle:
 print('Found it!')
 return

 print("Didn't find it.")

find('Jon', ['Alice', 'Bob', 'Charlie', 'Diana'])
find('Diana', ['Alice', 'Bob', 'Charlie', 'Diana'])

How long does this take?

How about in an array of 40 M elements? 40 B?

4 / 19

Naming things in collections
sid = int(input('Enter student ID> '))

index = None
for i, s in enumerate(something_that_returns_students()):
 if s.id == sid:
 index = i

print('Found student at index:', index)

What is the "name" for the student in this collection?

print(students[i]) # print student i
students[i].name() # get student i's name
students[i] = ... # set to another student

5 / 19

That's odd...
Does it matter whether you're at index 12 or 93?

doesn't matter whether you registered first, tenth or last

"Student in seat 4" not a meaningful way to refer to you!

What's a better way to refer to you?

name

student ID
6 / 19

Another type of collection?
Sometimes the order of things doesn't matter

Sometimes we need a sensible name for things

There are only two hard things in Computer Science:

cache invalidation and naming things. — Phil Karlton

7 / 19

Python dictionary
A dictionary holds named values

Python type: dict

it's an unordered collection

every value in a dictionary also has a key (a name)

can look up values by key

can iterate over keys, values or both

8 / 19

Dictionary syntax
Create a dictionary:

students = {
 200125805: 'Jonathan Anderson',
 202412345: 'Somebody New',
}

enclosed in curly braces (not brackets or parentheses)

comma-separated items

each item has a key and a value

9 / 19

csf_rooms = {
 2111: "Alice Faisal",
 2112: "Computer lab",
 # ...
 4101: "Workstations",
 4103: "VISOR lab",
 # ...
 4123: "Jonathan Anderson",
 # ...
}

course_averages = {
 1010: 57.5,
 1020: 67.6,
 1030: 78.7,
 1040: 74.9,
}

grades = {
 200125805: [90, 98],
 # ...
}

Dictionary values
Can use any type for values:

10 / 19

populations = {
 'CBS': 24_848,
 'Corner Brook': 19_886,
 'Gander': 11_054,
 'Grand Falls-Winsor': 13_725,
 'Mount Pearl': 24_284,
 'Paradise': 17_695,
 "St. John's": 106_172,
}

checkers = {
 (0, 0): 'red',
 (0, 2): 'red',
 # ...
 (7, 1): 'black',
 (7, 3): 'black',
}

an_error = {
 [0, 0]: 'whut',
}

Dictionary keys
Can use many types for keys:

Population data is a bit stale: it's as of the 2011 census.
11 / 19

https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/hlt-fst/pd-pl/Table-Tableau.cfm?LANG=Eng&T=302&SR=1&S=3&O=D&RPP=9999&PR=10

Valid dictionary keys
TypeError: unhashable type: 'list' — ???

Keys must be hashable

Python's immutable containers are hashable

tuples are OK (if its elements are hashable), lists are not

strings are OK, arrays of characters are not

12 / 19

https://docs.python.org/3/glossary.html#term-hashable

Indexing
Can access individual elements just like indexing:

s = students[200125805] # looks a lot like a list or array
p = populations['Gander'] # well that's new!
populations["St. John's"] += 1 # congratulations to the new parents?

13 / 19

Iterating over dictionary keys and values
By default, you iterate over keys:

for sid in students:
 print(sid, ':', students[sid])

for city in populations.keys(): # this does the same thing
 print(city, ':', populations[city])

Can also iterate over values

for pop in populations.values():
 print(pop) # but we don't know which city we're referring to

14 / 19

Iterating over dictionary items
Can also iterate over items (key, value tuples)

for sid, student in students.items():
 print(sid, ':', student)

for city, pop in populations.items():
 print(city, ':', pop)

Ordering may not be preserved*

* Fine print (not on the exam): Python 3.7+ preserves insertion order in the dict type, but

many Python packages that interact with dict don't assume that ordering will be preserved,

so they may not work to preserve it in the data you import or export.
15 / 19

Depending on the version of Python and other factors, it's possible that iterating twice over a

dictionary might give you a different order each time.

Using dictionaries
Helpful when name more important than order

Allow very fast search by key

no need to look at all 40 B records!

how? details will come later (ECE 4400 or equivalent)

Basis for lots of code in Python packages you may use

16 / 19

Example with pandas*
pandas frames behave like dicts:

import pandas as pd

#
Read data and compute some summaries:
#
data = pd.read_csv('covid-data.csv')

data['Total'] = data['New'].cumsum()
data['Deceased'] = data['Deaths'].cumsum()
data['Recovered'] = data['Recoveries'].cumsum()

...

* See the rest of the code as well as the data it operates on
17 / 19

https://pandas.pydata.org/
https://gist.github.com/trombonehero/b7b2ec2667dab2bf3bb09399984a8046
https://docs.google.com/spreadsheets/d/1vyBnGK-3c5e9wsL5e278NR1G3uTqdUH6wOwCRzgUb4I

Summary:
Dictionaries

sophisticated associative collection

semantics

syntax

usage

18 / 19

