
Previously
Functions (with a bit more structure):

Definition and call syntax

Parameters and arguments

Variable scope

Recursion

2 / 20

Today
Modules

Python files as scripts (or not)

The import statement

Python scripts and __main__

3 / 20

Python code quantities
Often measured in SLoC (source lines of code)

labs: maybe as much as 200 lines?

engi1020: 1031 lines

qutebrowser: 40k lines

Python standard library: 500k lines

no limit to amount of code you can write!

4 / 20

Large, complex pieces of software like Web browsers and operating systems have

millions of lines of code. We don't write all of those lines in one source file!

https://qutebrowser.org/

Recall: organizing your writing
How would you organize:

a text?

a letter?

an essay?

a report?

a book?

5 / 20

Organizing Python
We've seen:

expressions (like phrases)

statements (like sentences)

"simple" statements: assignment, pass, return, ...

"compound" statements: if, while, for, def, ...

functions (like paragraphs)

6 / 20

"Simple" and "compounds" statements are a distinction that's made by the full Python grammar,

which is the "last word" on the syntactic rules of the langauge. However, you're definitely not

expected to understand all of these grammatical rules after finishing just one introductory course!

https://docs.python.org/3/reference/grammar.html

Today
Modules

Like chapters and parts

Organize larger chunks of code into hierarchies

Multiple files working together

The import statement (in more detail / with more

background than we've seen before!)

7 / 20

What's the difference?

Python files
So far, we've written Python scripts:

files containing statements

statements executed one at a time

Can also use Python files as modules:

files containing statements

statements executed one at time
9 / 20

How we run Python code
Python scripts:

open a file

click "Run" (or run from the command line)

Python modules

run when we import them

"import"... where have we seen that before?
10 / 20

import statement
Makes names from a module available for use:

from math import *
y = sin(0)

import math
y = math.sin(0)

import central
m = central.mean([1, 2, 3])

But how does this actually work?
11 / 20

Importing modules
When we import a module:

Python interpreter looks for a file with that name + '.py'

interpreter executes its statements

result: module with global names accessible with .

import math
y = math.sin(x)
z = math.cos(y)

12 / 20

Where the Python interpreter finds a module can be a bit complicated. One set of places it looks is

the list of directories contained in sys.path:

>>> import sys
>>> print(sys.path)
['/Users/jon/Documents/Teaching/1020/website/content/lectures/17', '/Applications/Thonny.app/Contents/Frameworks/Python.framework/Versions/3.7/lib/python37.zip', '/Applications

For our purposes, the most important of these is the first entry: the current directory .

import syntax
import goodstuff
goodstuff.greet("Jon")

import goodstuff as stuff
stuff.boots_filled = True

from goodstuff import scald
if scald:
 print("Got 'er scald!")

from goodstuff import greet as hello
hello("world")

13 / 20

Aside
dir tells us names in a module (or other things we'll see later):

>>> import engi1020.arduino.api
>>> dir(engi1020.arduino.api)
[#...
 'analog_read',
 'analog_write',
 'buzzer_frequency',
 #...
 'temp_humid_getTemp']

14 / 20

Python modules
So how can we write/use our own modules?

1. Write a Python file (just like we've been doing)

2. Save it with a valid identifer name + .py

3. import it from a script in the same directory

4. Refer to its attributes (global names)

15 / 20

Python modules that are scripts
One potential problem:

def add(x, y):
 return x + y

Some test code:
test_x = input('x?')
test_y = input('y?')
result = add(test_x, test_y)

What's the problem?

16 / 20

If you submit something like this to Gradescope as an assignment, the autograder will try to

import your code and it will hang forever waiting for user input. A module should

not do this kind of computation when imported . So what can we do instead if we want

to write test code (which is a good idea)?

Separating test code
Separation of concerns

Separate modules for code that does different things:

central.py : implementation of assignment 2 (individual)

test.py : tests for assignment 2 (can be shared)

import central

result = central.mean([1, 2, 3])
expected = 2.0
if result != expected:
 print("mean returned '" + result + "'; expected '" + expected + "'")

17 / 20

http://localhost:10200/assignment/2

Python module __name__
A special variable containing the module's name

In scripts: will be '__main__'

def add(x, y):
 return x + y

if __name__ == '__main__':
 # Run the tests:
 test_x = input('x?') # etc.

18 / 20

Summary
Modules

Python files as scripts (or not)

The import statement

Python scripts and __main__

19 / 20

