
Previousl�
Functions (with a bit more structure):

De�nition and call syntax

Parameters and arguments

Variable scope

Recursion

2 / 20

Toda�
Modules

Python �les as scripts (or not)

The import statement

Python scripts and __main__

3 / 20

Pytho� cod� quantitie�
Often measured in SLoC (source lines of code)

labs: maybe as much as 200 lines?

engi1020: 1031 lines

qutebrowser: 40k lines

Python standard library: 500k lines

no limit to amount of code you can write!

4 / 20

Large, complex pieces of software like Web browsers and operating systems have

millions of lines of code. We don't write all of those lines in one source �le!

https://qutebrowser.org/

Recal�: organ�in� your writin�
How would you organize:

a text?

a letter?

an essay?

a report?

a book?

5 / 20

Organ�in� Pytho�
We've seen:

expressions (like phrases)

statements (like sentences)

"simple" statements: assignment, pass, return, ...

"compound" statements: if, while, for, def, ...

functions (like paragraphs)

6 / 20

"Simple" and "compounds" statements are a distinction that's made by the full Python grammar,

which is the "last word" on the syntactic rules of the langauge. However, you're de�nitely not

expected to understand all of these grammatical rules after �nishing just one introductory course!

https://docs.python.org/3/reference/grammar.html

Toda�
Modules

Like chapters and parts

Organize larger chunks of code into hierarchies

Multiple �les working together

The import statement (in more detail / with more

background than we've seen before!)

7 / 20

What's the di�erence?

Pytho� �le�
So far, we've written Python scripts:

�les containing statements

statements executed one at a time

Can also use Python �les as modules:

�les containing statements

statements executed one at time
9 / 20

How w� ru� Pytho� cod�
Python scripts:

open a �le

click "Run" (or run from the command line)

Python modules

run when we import them

"import"... where have we seen that before?
10 / 20

import statemen�
Makes names from a module available for use:

from math import *
y = sin(0)

import math
y = math.sin(0)

import central
m = central.mean([1, 2, 3])

But how does this actually work?
11 / 20

Importin� module�
When we import a module:

Python interpreter looks for a �le with that name + '.py'

interpreter executes its statements

result: module with global names accessible with .

import math
y = math.sin(x)
z = math.cos(y)

12 / 20

Where the Python interpreter �nds a module can be a bit complicated. One set of places it looks is

the list of directories contained in sys.path:

>>> import sys
>>> print(sys.path)
['/Users/jon/Documents/Teaching/1020/website/content/lectures/17', '/Applications/Thonny.app/Contents/Frameworks/Python.framework/Versions/3.7/lib/python37.zip', '/Applications

For our purposes, the most important of these is the �rst entry: the current directory .

import synt�
import goodstuff
goodstuff.greet("Jon")

import goodstuff as stuff
stuff.boots_filled = True

from goodstuff import scald
if scald:
 print("Got 'er scald!")

from goodstuff import greet as hello
hello("world")

13 / 20

Asid�
dir tells us names in a module (or other things we'll see later):

>>> import engi1020.arduino.api
>>> dir(engi1020.arduino.api)
[#...
 'analog_read',
 'analog_write',
 'buzzer_frequency',
 #...
 'temp_humid_getTemp']

14 / 20

Pytho� module�
So how can we write/use our own modules?

1. Write a Python �le (just like we've been doing)

2. Save it with a valid identifer name + .py

3. import it from a script in the same directory

4. Refer to its attributes (global names)

15 / 20

Pytho� module� tha� ar� script�
One potential problem:

def add(x, y):
 return x + y

Some test code:
test_x = input('x?')
test_y = input('y?')
result = add(test_x, test_y)

What's the problem?

16 / 20

If you submit something like this to Gradescope as an assignment, the autograder will try to

import your code and it will hang forever waiting for user input. A module should

not do this kind of computation when imported . So what can we do instead if we want

to write test code (which is a good idea)?

Separatin� tes� cod�
Separation of concerns

Separate modules for code that does di�erent things:

central.py : implementation of assignment 2 (individual)

test.py : tests for assignment 2 (can be shared)

import central

result = central.mean([1, 2, 3])
expected = 2.0
if result != expected:
 print("mean returned '" + result + "'; expected '" + expected + "'")

17 / 20

http://localhost:10200/assignment/2

Pytho� modul� __name__
A special variable containing the module's name

In scripts: will be '__main__'

def add(x, y):
 return x + y

if __name__ == '__main__':
 # Run the tests:
 test_x = input('x?') # etc.

18 / 20

Summar�
Modules

Python �les as scripts (or not)

The import statement

Python scripts and __main__

19 / 20

