
Le�'� �nis� up �nction�!
Recall:

Keyword arguments

Default arguments

Today:

Recursion

2 / 8

Recal�: keywor� argument�
Using the colour LCD screen:

rgb_lcd_colour(255, 0, 255)

(aside: what colour is this?)

Easier to tell now:

rgb_lcd_colour(red=255, green=0, blue=255)

No positional arguments after the �rst keyword argument
3 / 8

def get_user_input(prompt='Input? '):
 return input(prompt)

Recal�: defaul� argument�
Passed to the parameter if no

argument in the call

One way to print:

print('these', 'words', 'go', 'on', 'one', 'line')
print('these', 'words', 'go', 'on', 'the', 'next', 'line')

Another way:

print(1, 2, 3, sep='*', end=' + ')
print(4, 5, 6, sep='*')

4 / 8

Recursio�
A function calling itself (??)

def factorial(n):
 return n * factorial(n-1)

each call has its own variables

beware of in�nite recursion (as in the example above!)

need a base case: when do we stop recursing?

5 / 8

ere are lots of interesting problems in computing whose solutions can be expressed most

elegantly via a recursive function. We won't require you to write a lot of those — that's more for a

Data Structures and Algorithms course in Term 4 — but you do need to be at least somewhat

familiar with the concept of recursion. It's an elegant tool, but like a lot of interesting concepts, it

has subtleties to be aware of.

Like a loop with a perpetually-true condition, recursion can lead to a program that never stops

running (at least until it runs out of memory for all of the function calls' memory!).

A base case for recursion is when the recursion stops . In the example of a

factorial, the factorial is actually de�ned in two parts:

e base case for our factorial function, therefore, is that when n is 0, factorial should

return 1 .

Problem�
Let's work on some problems!

6 / 8

Summar�
More fun with functions:

Special arguments:

keyword arguments

default arguments

Recursion

Next: modules!
7 / 8

