
Toda�
What is correctness?

How can we know what's right?

What can we do to check our code's correctness?

2 / 12

Correctnes�
When our code always does the right thing

No mistakes!

"one mistake in a million isn't so bad, is it?"

processor execute billions of instructions per second!

how about about 1 in 9 billion?

3 / 12

is is a very high bar to clear!

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

Checkin� correctnes�
Ultimately: mathematical proof

possible in some circumstances

often di�cult in practice

area of active research!

What's the next best thing?

4 / 12

Even some of the highest-assurance systems (e.g., seL4) have a lot of caveats around their proofs of

correctness. eir authors really have constructed mathematical proofs of correctness, but as they

say, such proofs "prove exactly what you have stated, not necessarily what you mean or what you

want". So, while this is a worthwhile activity, and research continues to push new boundaries, most

code can't be proven correct . is is for one of two reasons:

the code is beyond the complexity that we can handle proving or

the code is not correct!

https://sel4.systems/Info/FAQ/proof.pml

Testin�
Code

Speci�cations

Tests

5 / 12

Testin�
Code

what you've worked so hard on

hopefully does what we want...

... but how can we tell?

"It works on my computer"

"It works perfectly for me"

6 / 12

Few things are more frustrating than when something doesn't work, you send it in to get �xed and

you get the response, "it works for me!" In my last car, the air conditioning often wouldn't turn on.

I would bring it into the shop and say, "it's hot outside, the aircon doesn't blow cold air, and my

family is really hot all of the time." When the mechanic turned the car on, however, it "worked for

them". So was the air conditioning working or not?

Testin�
Speci�cation

precise description of

requirements

can never capture everything we want

attempts to describe all required behaviour

like any model, should correspond with the real world

7 / 12

Mathematical models are precise and reproducible , which is very helpful for

testing. However, if they don't correspond to the real world, they're not very

useful ! It's easy to write a speci�cation that you can live up to where that speci�cation

isn't terribly meaningful in the real world... just ask the staff who have to wear winter coats to work

in a new building where the HVAC systems have been checked for conformance with the

speci�cation!

Testin�
Test

a set of inputs and expected

outputs

based on the speci�cation

can be checked independently against the speci�cation

8 / 12

Boundarie�
Limitations of testing

How long would it take to

test possible inputs?

How should we test the

following?

def phase(pressure, temp):
 """Find the phase of water at
 the given pressure and temperature.
 """
 # ...

9 / 12

We usually can't test exhaustively , i.e., checking every single possible input.

�ampl�*
Given a speci�c year as an input, a function should return true

if the provided year is a leap year and false if it is not.

A year is a leap year if:

the year is divisible by 4;

and the year is not divisible by 100;

unless it is divisible by 400 (when it is a leap year)

* From Software Testing: From Theory to Practice, Maurício Aniche, 2020. https://sttp.site
10 / 12

https://sttp.site/

Summar�
What is correctness?

How can we know what's right?

What can we do to check our code's correctness?

11 / 12

