
Computation

Expressions

Variables

Flow control:

if statements

loops: while, for and iteration

The story so far

Function definition

Later: objects, modules, more types, numbers...
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Today
Functions (with a bit more structure):

Semantics

Syntax (both call and definition)

Parameters and arguments
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count = 0

if name[0] == 'e':
    count += 1

if name[1] == 'e':
    count += 1

if name[2] == 'e':
    count += 1

if name[3] == 'e':
    count += 1

# ...

Don't repeat yourself!
What's wrong with this code?

technically nothing iff we know how many

characters are in name

but we don't always know

also... ick!
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This code, in addition to being inflexible, offends our programmer's sense of aesthetics.

Programmers are lazy in a good way : we don't like to repeat ourselves!



for i in range(word_lenth):
    if word_a[i] < word_b[i]:
        print(word_a, '<', word_b)
        break

    if word_b[i] < word_a[i]:
        print(word_b, '<', word_a)
        break

for i in range(word_lenth):
    if word_b[i] < word_c[i]:
        print(word_b, '<', word_c)
        break

    if word_c[i] < word_b[i]:
        print(word_c, '<', word_b)
        break

More repetition
What's wrong here?

lexical ordering of words

comparing word A to B is fine

comparing A to B and B to C is

repetitive

what if we need to compare lots

of words in a game?
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Functions
A way of creating abstractions

A procedure that we can:

define once

use many times

Help us stay DRY (don't repeat yourself)
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Function call
We've been using this for a while:

print('hello')

A function call is an expression that evaluates to something:

a = analog_read(2)

A call can take multiple arguments:

digital_write(4, True)
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def any_valid_name(x, y, z):
    """Example of function documentation.

    It's common to start a function with a
    description in a Python "docstring".
    """

    # we can return any expression, or None
    return x + y * z

Function definition
def keyword

function name ("valid"?)

parameters

docstring*

function body

* A triple-quoted string can have multiple lines in it, and, it's safe to use either single (') or

double (") quotes without causing confusion ("is this the end of the string?").
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Parameters vs arguments
Parameters: variables initialized by arguments

def abs(x):
    if x >= 0:
        positive = x
    else:
        positive = -x

    return positive

Arguments: values passed into functions

abs(-2)
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def any_valid_name(x, y, z):
    """Example of function documentation.

    It's common to start a function with a
    description in a Python "docstring".
    """

    # we can return any expression, or None
    return x + y * z

Function docstrings
description of function

like a comment: for

people, not the computer

often triple-quoted*

* A triple-quoted string can have multiple lines in it, and, it's safe to use either single (') or

double (") quotes without causing confusion ("is this the end of the string?").
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def any_valid_name(x, y, z):
    """Example of function documentation.

    It's common to start a function with a
    description in a Python "docstring".
    """

    # we can return any expression, or None
    return x + y * z

Function body
one or more statements

can be any statement

can be pass
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A function body can include any kind of statement: assignment, if statement, loop...

A function body must have at least  one statement in it. However, that statement can be

pass, which means "do nothing".



def any_valid_name(x, y, z):
    """Example of function documentation.

    It's common to start a function with a
    description in a Python "docstring".
    """

    # we can return any expression, or None
    return x + y * z

Return value
a function's "output"

input: arguments to

parameters

output: return value

can be any value

can be None
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A function with no return statement implicitly returns None .


