
Computation

Expressions

Variables

Flow control:

if statements

loops: while, for and iteration

The story so far

Function definition

Later: objects, modules, more types, numbers...

2 / 13

Today
Functions (with a bit more structure):

Semantics

Syntax (both call and definition)

Parameters and arguments

3 / 13

count = 0

if name[0] == 'e':
 count += 1

if name[1] == 'e':
 count += 1

if name[2] == 'e':
 count += 1

if name[3] == 'e':
 count += 1

...

Don't repeat yourself!
What's wrong with this code?

technically nothing iff we know how many

characters are in name

but we don't always know

also... ick!

4 / 13

This code, in addition to being inflexible, offends our programmer's sense of aesthetics.

Programmers are lazy in a good way : we don't like to repeat ourselves!

for i in range(word_lenth):
 if word_a[i] < word_b[i]:
 print(word_a, '<', word_b)
 break

 if word_b[i] < word_a[i]:
 print(word_b, '<', word_a)
 break

for i in range(word_lenth):
 if word_b[i] < word_c[i]:
 print(word_b, '<', word_c)
 break

 if word_c[i] < word_b[i]:
 print(word_c, '<', word_b)
 break

More repetition
What's wrong here?

lexical ordering of words

comparing word A to B is fine

comparing A to B and B to C is

repetitive

what if we need to compare lots

of words in a game?
5 / 13

Functions
A way of creating abstractions

A procedure that we can:

define once

use many times

Help us stay DRY (don't repeat yourself)

6 / 13

Function call
We've been using this for a while:

print('hello')

A function call is an expression that evaluates to something:

a = analog_read(2)

A call can take multiple arguments:

digital_write(4, True)

7 / 13

def any_valid_name(x, y, z):
 """Example of function documentation.

 It's common to start a function with a
 description in a Python "docstring".
 """

 # we can return any expression, or None
 return x + y * z

Function definition
def keyword

function name ("valid"?)

parameters

docstring*

function body

* A triple-quoted string can have multiple lines in it, and, it's safe to use either single (') or

double (") quotes without causing confusion ("is this the end of the string?").
8 / 13

Parameters vs arguments
Parameters: variables initialized by arguments

def abs(x):
 if x >= 0:
 positive = x
 else:
 positive = -x

 return positive

Arguments: values passed into functions

abs(-2)

9 / 13

def any_valid_name(x, y, z):
 """Example of function documentation.

 It's common to start a function with a
 description in a Python "docstring".
 """

 # we can return any expression, or None
 return x + y * z

Function docstrings
description of function

like a comment: for

people, not the computer

often triple-quoted*

* A triple-quoted string can have multiple lines in it, and, it's safe to use either single (') or

double (") quotes without causing confusion ("is this the end of the string?").
10 / 13

def any_valid_name(x, y, z):
 """Example of function documentation.

 It's common to start a function with a
 description in a Python "docstring".
 """

 # we can return any expression, or None
 return x + y * z

Function body
one or more statements

can be any statement

can be pass

11 / 13

A function body can include any kind of statement: assignment, if statement, loop...

A function body must have at least one statement in it. However, that statement can be

pass, which means "do nothing".

def any_valid_name(x, y, z):
 """Example of function documentation.

 It's common to start a function with a
 description in a Python "docstring".
 """

 # we can return any expression, or None
 return x + y * z

Return value
a function's "output"

input: arguments to

parameters

output: return value

can be any value

can be None

12 / 13

A function with no return statement implicitly returns None .

