
Last time
Introduction to Introduction to Programming

Knowledge and Computation

2 / 22

A simple algorithm
e.g., find the sum of the set

Mathematically:

Algorithmically?

(do this as an exercise)

3 / 22

Suggested methodology:

work out an example or two

break it into steps

explain the steps to someone else (pretend they're a computer)

Python:

y = x / 2
if (2 * y == x):
 print(x, 'is even')

C++:

int y = x / 2;
if (2 * y == x)
 cout << x << " is even\n";

Software
Description of instructions for a computer

You express meaning using a programming language

Also:

Assembly, C, C#,

Go, Java, Matlab,

Perl, R, Rust, Scala,

SPIN...

Your code is translated into machine instructions
4 / 22

What is software?

Softer than hardware?

There's also "firmware", but...

Software, whether written in C++, Java, Python or another programming language, is a way of

describing algorithms to a computer . Consider the following implementations of the

algorithm from above that checks whether or not a number is even.

You should note that these two code snippets look a bit different, as the details of the two

programming languages are different, but the fundamentals of algorithms are the

same .

In both the Python and C++ examples, a program has to translate the programmer-readable source

code into computer-readable machine code for the CPU to execute. This process will happen mostly

transparently to us as we work with Python via online Python environments or integrated

development environments (IDEs). I have provided information about getting started with Python

tools on the tools page.

http://localhost:10200/lecture/1/%7B%7B%%20relref%20%22/resources/tools/online%22%20%%7D%7D
http://localhost:10200/lecture/1/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/1/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/1/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/1/%7B%7B%3C%20relref%20%22/resources/tools%22%20%3E%7D%7D

Programming languages
vs natural languages

like natural languages

unlike natural languages

Syntax and semantics

syntax: rules of well-formed language

semantics: the meaning of it all
5 / 22

Like natural languages, a medium for expressing semantics

Unlike natural languages, highly constrained (more like math). Allows succinct yet powerful

constructions.

Write some software
Yes, right now!

1. Think about a problem, e.g., what is ?

2. Compute an answer

3. Check your answer with Python

Type 1 + 2 * 3 - 4 into pythonmorsels.com/repl, then

press Enter

6 / 22

https://www.pythonmorsels.com/repl

What did you just do?
Wrote an expression

Expression was evaluated

What is an expression?

Algebra: values, operators that evaluate to a value

Programming: the same! (even operator precedence)

7 / 22

Not:

Python 3.9.1
>>> x = 21
>>> y = 21
>>> x + y
42

Or:

x = 21
y = 21
print(x + y)

Just:

21 + 21

Or even:

42

See: "Resources" > "Tools"

Exercise 0
Submit a Python expression that evaluates to 42

Submit .py file to Gradescope

8 / 22

http://localhost:10200/resources/tools
https://www.gradescope.ca/courses/14930

Expressions
Values and operations that evaluate to a value

Let's consider each of these words in turn

9 / 22

Literals
Literally mean what they literally say

42 : an integer literal

3.14 : a real-number (floating-point) literal

'hello' : a string literal

True : a logical (Boolean) literal

Expression: values and operations that evaluate to a value
11 / 22

Integer literals
1, 2, 42... (ok, so like math!)

1_000_000 (ok, so a bit like math...)

0b10, 0o10, 0x10 (what!?)

Expression: values and operations that evaluate to a value
12 / 22

You can use underscores in the middle of a Python integer literal to help group numbers and keep

things clear. These underscores can go anywhere : they're not tied to thousands, so be

careful! (e.g., 1_00_000 looks a lot like 1_000_000, but its meaning is quite different)

We'll come back to what these different ways of writing integers mean when we get to talking

about how numbers are represented. For now, just know that there are lots of ways to write

integers! (exercise for the keen: what do these "funny" integer literals evaluate to?)

Floating-point literals
3.0 — is this the same as 3?

3.1 — ok, definitely not the same as 3

3.1415927 — definitely not the same as 3

(Professor Frink notwithstanding)

Scientific notation: 3.14e0, 1e100...

Expression: values and operations that evaluate to a value
13 / 22

https://www.youtube.com/watch?v=L1eegVTwDS0

Imaginary literals
With integer prefix: 1j, 2j, ...

With floating-point prefix: 1.0j, 1.1j...

Not complex literals, imaginary literals

1+2j is actually an expression

Expression: values and operations that evaluate to a value
14 / 22

Variables
Named values

Actually, it's slightly more complicated than that, but...

>>> from math import *
>>> pi
3.141592653589793
>>> 2j * pi
6.283185307179586j

r1 + r2

Expression: values and operations that evaluate to a value
15 / 22

We'll talk more about variables in later lectures when we talk about how to create them.

For now we will just focus on using them.

Expressions
Values and operations that evaluate to a value

Values ✔

literals ✔

variables ✔

Operations

16 / 22

Operations
Starting with arithmetic operators:

Symbol Meaning Usage Math

+ addition 1 + 2

- subtraction 3 - 4

* multiplication 5 * 6

/ division 7 / 8 or

17 / 22

Operation Kind

() parenthetical

*, / multiplicative

+, - additive

Evaluation: precedence
Order of operations matters

Just like math! (for now)

18 / 22

Top Hat question: Order of Operations (literals only)

Division operator
 or

Integers and real (floating-point) numbers

>>> 7 / 2
3.5

>>> 7 // 2
3
>>> 7 % 2
1

19 / 22

We can perform division on integers and real numbers . It doesn't make sense

to divide, say, a string and an integer. Syntactically, x / y is valid, but it could be semantically

nonsense.

Q: what is ?

How about in long division?

When performing long division, we will often leave the result as 3 with a remainder of 1.

