
Why are you here?

3 / 23

Top Hat: "why are you here"

Why study programming?
Career, entrepreneurship, changing the world...

Responsibility

Important way of thinking about problem-solving

algorithmic / computational thinking comes up in every

Engineering discipline!

interesting problems to solve... can be fun!

4 / 23

Even if you don't write much software in your career, we live in a digital world that cannot

be mastered without some understanding of the way computers work . Engineers use

computers in lots of ways, whether we put computers into the systems we just use computer

software to help us design things. Engineers are responsible for their use of computers :

you can't blame your tools for faulty design! "My software gave me the wrong answer" is no better

an excuse than "my calculator is broken", so we need to understand how to gain confidence

that software is working correctly .

Computer programming gives us a helpful way of solving problems , not to mention

a structured way of thinking about problems and solutions . Every engineer should be

able to express solutions to certain classes of problems using algorithms (structured, step-by-step

solutions to problems). Many first-year Engineering students think this is the last they'll hear of

programming, but Statistics begs to differ, as does Fluid Dynamics, as does seismic analysis... even

effective use of spreadsheets is greatly helped by some fundamental understanding of

programming. And, of course, good software designers are always in demand in the job

market!

Finally, whether or not you currently believe it, I hope to show you this term that

programming can be fun!

Solving problems with software
specify engineering processes using propositional logic

recognize the pervasiveness of computing in engineered

systems and explain its systemic impacts [...]

explain how computers store values, compute on them

choose data types to solve engineering problems

analyze software; explain how it works (or why it doesn't)

construct solutions using imperative programming

design algorithms to solve engineering problems though

top-down procedural decomposition
5 / 23

Q: What do you notice about these learning outcomes for ENGI 1020?

A: None of them say anything about Python !

This course is about how to think programmatically , not how to program in

Python . The lessons you take away from this course should be portable to all kinds of

programming languages, and even to non-programming situations where structured, analytical

thinking is called for — which ought to be most of Engineering !

We use software to address incredibly complex problems, from building self-driving cars (or self-

driving submarines, as some folks do here at Memorial) to training ship's crews to securing

networks against hackers (as in my own research). In fact, computer programs are among the most

complex artifacts ever built.

https://merlin.creait.mun.ca/
https://merlin.creait.mun.ca/
https://www.mi.mun.ca//departments/centreformarinesimulation
https://www.engr.mun.ca/~anderson/research

Programming toolbox
logic

computation

data types

imperative programming...

... in Python

6 / 23

That said, we do need to put this theory into practice, and that requires a programming language.

Like a musician , theory alone is insufficient: in order to really get it, you need to

lock yourself away in a practice room and work on it until it moves from your

head to your gut . Just like you can apply musical theory to a piano or a guitar

or any other instrument, so we can apply our programming tookbox to any programming

language, but in our exercises, assignments and labs, we will use the Python programming

language.

Python is a very useful language because it supports many different ways of thinking about

programming, it includes lots of useful software tools for interacting with users and other

computers, and it provides a good foundation from which you can learn other programming

languages. However, please remember throughout the course that our goal is to learn about

programming in general , not just a particular programming language.

How to succeed
Active engagement:

Try things out

Practice, practice, practice!

Ask questions

Work together and independently

7 / 23

A good way to underperform in this course is to come to lectures, passively consume them, only do

the things you are explicitly told to do and let you lab partner do things without your

understanding. The value you get out of this course will be proportional to the effort you put in to

explore and understand the material. Specifically, it is helpful to:

When I show you some example code and explain how it works, don't take my word for it: try it

yourself! Try running the same code with different inputs to see if you can predict how it will react.

Try finding different solutions to the same problem or to slightly different problems to gauge your

own understanding of the material.

Software design and development, like other kinds of Engineering design, blends both

science and art . I will teach you things about designing software-based solutions to

problems, but you can't really say you've learned design unless you practice designing. This is much

like learning to play a musical instrument, you need to learn some theory, but you also need

to practice . The Tools page provides details on how to get set up with software tools for

writing, compiling and testing Python code. Please take a look at this page and make sure that you

are comfortable with at least one of these tools during the first week of

lectures .

In class or labs, in Office Hour or the Success Centre, with friends or with me, via Top Hat or in

Brightspace, if you don't understand something, ask .

Most students will find that, to help them truly succeed, they need to both work with

other students on some things and work alone on others. In this course you will

encounter lots of exercises and examples that you should work through, and you may find it

helpful to do so with your peers so that you can help each other out as your grow in your

understanding of the material. You will also have (at least) one partner with whom you will work

on prelab questions, experiments and writing. So, there will be plenty of opportunity to work in

groups and in pairs to help you form your ideas about programming and how it's done.

It's also a good idea to complete at least some of the exercises by yourself to check that

you're able to think algorithmically yourself, not just when you're working with others. After

you've formed your understanding together checking your understanding individually can help

http://localhost:10200/resources/tools

you ve formed your understanding together, checking your understanding individually can help

give you confidence that you are building mastery of this material. Assignments must be

completed individually.

Resources
Course website: https://engi1020.ca

Textbook useful but optional

Lab kit mandatory

Web resources: Gradescope, Top Hat...

https://www.gradescope.ca/courses/14930

https://app-ca.tophat.com/e/610620 (also

linked from Brightspace)
8 / 23

https://engi1020.ca/
https://shop.mun.ca/CourseSearch/?course[]=MUN,WINT22,ENGI,ENGI102000,&
https://www.gradescope.ca/courses/14930
https://app-ca.tophat.com/e/610620

Human resources
office hours: in the course outline

online: email me (address in the course outline)

Lab instructor: Alice Faisal (CSF-4111)

Engineering One Success Center:

Tutors: consult “Engineering One” Brightspace shell

Supplemental Instruction (SI) leader: Riyana Afroze

9 / 23

Actions for today
Ensure you can access the following resources:

Brightspace (grades)

https://online.mun.ca/d2l/home/567329

Gradescope (assignments, labs)

https://www.gradescope.ca/courses/14930

Top Hat (lectures, interactive response)

https://app-ca.tophat.com/e/610620

If not, please email me today
10 / 23

https://online.mun.ca/d2l/home/567329
https://www.gradescope.ca/courses/14930
https://app-ca.tophat.com/e/610620

What computers are
Memory

a.k.a., random access memory

stores information in bits

Central processing unit

performs computation

Input/output devices
11 / 23

These three functional components allow the computer to compute , to

remember and to communicate . There are lots of other things inside of a

modern computer, but they all exist to serve and facilitate these main tasks.

This overall structure is the same for the computer you're using to read these lecture notes, the

Arduino computers that you'll use in the lab, the computer(s) inside your watch and even the

computers that run cars, lighting fixtures, solar panel trackers, etc.! All of these computers have the

same structure . What's different about them is the power of their CPUs, the quantity of

their memories and the kinds of I/O devices they have.

What computers do
Remember things (memory)

numbers

strings of characters (words, sentences, etc.)

program instructions

Follow instructions (CPU)

12 / 23

CPUs follow instructions
One step at at time

Computers are dumb

Computers are fast

Where do the instructions come from?

13 / 23

The CPU is the brain of the computer, and we will spend most of our time thinking about how it

does its work (later courses in programming, microprocessors and data structures spend more time

on these).

"How do you eat an elephant" joke

The key thing to keep in mind is that a CPU follows instructions , and it does this

one step at a time . The CPU follows a sequence of instructions .

Computers aren't capable of thinking, but they can execute simple instructions very quickly!

Program instructions
What is knowledge?

Declarative / propositional knowledge

 is 3.1415926..., my name is Jon, it's warm, I like Engineering

Imperative / procedural knowledge

How to calculate , how to change a tire or bake a cake ...

a.k.a., an algorithm
14 / 23

Logical propositions are statements that can be either true or false. The propositions on

this slide are all true — at least today! We leave as an exercise for the reader determining which of

these propositions could be false, or alternatively, determining just how bad a day it would be if

each of them were false!

Imperative or procedural knowledge concerns things that you know

how to do. The procedural examples on this slide include activities for which you could write

instructions (using the imperative verb tense); someone else could follow these

instructions in order to do the task. The instructions might be encoded in a math textbook, a shop

manual or a recipe book, but the fundamental construction of a procedure is the same.

Such a set of step-by-step instructions for accomplishing a task is called an algorithm .

Algorithm
A step-by-step procedure

with decisions

Example algorithm:

1. Let .

2. If , is even.

"bake until golden brown", "for each tire"...

15 / 23

Why the Great British Bake-off?

An algorithm is like a recipe

Note that this is more than just a mathematical formula or equation: it involves a step-by-step

approach that may (for many algorithms) be difficult to represent as an equation.

http://www.bbc.co.uk/food/recipes/mary_berrys_perfect_34317
http://www.instructables.com/id/How-to-Rotate-Your-Cars-Tires

Another algorithm
Sum of integers

e.g., find the sum of the set

Mathematically:

Algorithmically? (do this as an exercise)
16 / 23

Suggested methodology:

work out an example or two

break it into steps

explain the steps to someone else (pretend they're a computer)

Python:

y = x / 2
if (2 * y == x):
 print(x, 'is even')

C++:

int y = x / 2;
if (2 * y == x)
 cout << x << " is even\n";

Software
Description of instructions for a computer

You express meaning using a programming language

Also:

Assembly, C, C#,

Go, Java, Matlab,

Perl, R, Rust, Scala,

SPIN...

Your code is translated into machine instructions
17 / 23

What is software?

Softer than hardware?

There's also "firmware", but...

Software, whether written in C++, Java, Python or another programming language, is a way of

describing algorithms to a computer . Consider the following implementations of the

algorithm from above that checks whether or not a number is even.

You should note that these two code snippets look a bit different, as the details of the two

programming languages are different, but the fundamentals of algorithms are the

same .

In both the Python and C++ examples, a program has to translate the programmer-readable source

code into computer-readable machine code for the CPU to execute. This process will happen mostly

transparently to us as we work with Python via online Python environments or integrated

development environments (IDEs). I have provided information about getting started with Python

tools on the tools page.

http://localhost:10200/lecture/0/%7B%7B%%20relref%20%22/resources/tools/online%22%20%%7D%7D
http://localhost:10200/lecture/0/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/0/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/0/%7B%7B%%20relref%20%22/resources/tools/ides%22%20%%7D%7D
http://localhost:10200/lecture/0/%7B%7B%3C%20relref%20%22/resources/tools%22%20%3E%7D%7D

Programming languages
vs natural languages

like natural languages

unlike natural languages

Syntax and semantics

syntax: rules of well-formed language

semantics: the meaning of it all
18 / 23

Like natural languages, a medium for expressing semantics

Unlike natural languages, highly constrained (more like math). Allows succinct yet powerful

constructions.

Write some software
Yes, right now!

1. Think about a problem, e.g., what is ?

2. Compute an answer

3. Check your answer with Python

Type 1 + 2 * 3 - 4 into, e.g.,

https://www.pythonmorsels.com/repl, then press Enter

19 / 23

https://www.pythonmorsels.com/repl

What did you just do?
Wrote an expression

Expression was evaluated

What is an expression?

Algebra: values, operators that evaluate to a value

Programming: the same! (even operator precedence)

20 / 23

Not:

Python 3.9.1
>>> x = 21
>>> y = 21
>>> x + y
42

Or:

x = 21
y = 21
print(x + y)

Just:

21 + 21

Or even:

42

See: "Resources" > "Tools"

Exercise 0
Submit a Python expression that evaluates to 42

Submit .py file to Gradescope

21 / 23

http://localhost:10200/resources/tools
https://www.gradescope.ca/courses/8953

Questions?

