
ENGI1020 Lab Project Report
Our Smart Blind Stick Project

Timon Pahl - 202314585

Yassin Badawy- 202314661

Tabel of Contents

Section 1 - Final Design...3
Brief description of the program/algorithm... 3
Pseudocode for mainwithtxt.py.. 4
Pseudocode for normalmode.py.. 5
Pseudocode for light2time.py... 6
Pseudocode for getgpscoordinates.py...6
Pseudocode for texttospeech.py..7
Inputs and Outputs... 7
CircuIt Diagram.. 8

Section 2 - Implementation... 9
Section 3 - Testing..13

Testing for mainwithtxt.py... 13
Testing for normalmode.py... 14
Testing for Light2time.py.. 15
Testing for getgpscoordinates.py..16
Testing for texttospeech.py...16

Section 4 - Reflection and Conclusion...17

Section 1 - Final Design

Brief description of the program/algorithm
The aim of the software project is to develop a Smart Blind Stick to assist visually impaired
individuals in safely traversing their surroundings. The project seeks to address the
challenge faced by visually challenged persons, who have limited mobility, independence,
and safety requirements.

The Smart Blind Stick helps in navigating obstacles and responding to emergencies. The
innovation of the system is its integration of various sensors and communication tools.

A user menu has been developed which enables users to select from creating a new
account, choosing an existing account, obtaining an overview of stats for every user, or
exiting the program. For visually impaired users setting up a new account, it is advised that
they seek assistance from a trusted individual in order to define an emergency contact.
Upon entering normal mode of the program, the user can then activate a beep system. Our
device incorporates an ultrasonic distance sensor capable of detecting overhead obstacles.
These sensors emit audible alerts, providing real-time obstacle feedback and promoting safe
navigation.
Additionally, users can receive time announcements by hovering twice over the light sensor.
The code also incorporates an alarm system activated by high acceleration or abnormal
heart rate. We have implemented a system to ensure user well-being and avoid false
alarms. After the system detects a significant increase in acceleration or an irregular
heartbeat, the user will be prompted to respond. If there is no response, the system will
assume an emergency and activate the alarm.
The alarm mode includes sending a WhatsApp message to the designated emergency
contact with the user's current GPS coordinates. Additionally, the system will emit a noise to
draw attention. In a real emergency situation requiring rescue services, monitoring the
individual's current heart rate is critical information for determining the next steps to save
lives. Therefore, we have included a heart rate monitor display.
Figure 1 illustrates the features of The Smart Blind Stick.

Figure 1: Schematic visualization of the features of the Smart Blind Stick

Pseudocode for mainwithtxt.py

Import necessary libraries and modules

Define startup_sound
Define sound as {262: 0.2, 330: 0.2, 392: 0.2, 523: 0.6}
For each freq, dur in sound
Play tone at freq for dur seconds
Pause for 0.05 seconds

Define is_valid_phonenumber function:
Check if phone number length is between 7 and 15
Check if the first character is a plus sign
Check if the rest of the characters are digits
Return True if all conditions are met, else False

Define create_new_user function:
Prompt for a new username
If username exists, ask for a different username
Prompt for a valid phone number
Validate phone number using is_valid_phonenumber
If valid, add new user data to user_data
Enter normal mode with the new user
Save user data and return to the main menu

Define login_existing_user function:
Iterate through existing users
Allow user to select a user or return to the main menu
If a user is selected, enter normal mode with that user
Save user data and return to the main menu

Define save_user_data function:
Save user_data to a text file

Define load_user_data function:
Load user_data from a text file or initialize an empty dictionary if file doesn't exist

Main Program:
Play startup sound
Load user data
Display main menu with options to create user, select user, view statistics, or exit
If option 1 is chosen, create a new user
If option 2 is chosen, login as an existing user
If option 3 is chosen, display statistics for each user
If option 4 is chosen, save user data and exit the program
If an invalid option is chosen, prompt for a valid choice

Pseudocode for normalmode.py

Import necessary libraries and modules

Define last_check_before_alarm function:
Prompt user to press a button within 5 seconds if they are okay
If button is pressed within 5 seconds, return True
Otherwise, return False

Define alarm_mode function:
Turn on buzzer and LED
Send a WhatsApp message with user's name and GPS coordinates to emergency contact
Keep repeating a call for help until the button is pressed
Once button is pressed, turn off buzzer and LED and indicate alarm deactivation

Define check_for_high_acceleration function:
Calculate the magnitude of acceleration from X, Y, Z values
Return True if magnitude exceeds a predefined threshold, otherwise False

Define normal_mode function:
Introduce the user to the normal mode
Continuously check for button press to return to the menu
Every 150 rounds, measure average light value for the say_time function
If light sensor is hovered over twice, say the current time
If touch sensor is pressed, activate a beeping system based on distance
Check heart rate and if abnormal, prompt user to confirm well-being
If no response, activate alarm mode
Check for high acceleration and if detected, prompt user to confirm well-being
If no response, activate alarm mode
Return updated user data

Main Program (for testing):
Test various functions with sample data

Pseudocode for light2time.py

Function say_time(threshold_light)
Read the current light level from sensor (analog_read(6)
If light_level is less than threshold_light (first impulse detected)
Record the current time (t1)

While current time - t1 is less than 2 seconds
Read the light level again
If light_level is greater than threshold_light (end of first impulse)
Record the current time (t2)

While current time - t2 is less than 2 seconds (waiting for second impulse)
Read the light level again
If light_level is less than threshold_light (second impulse detected)
Calculate the current time in hours and minutes
Convert the time to local time zone (UTC + 3.5 hours for St. John's)
Print and announce the current time using text_to_speech

End Function

Main Program
Continuously call say_time function with a threshold value (e.g., 80)

Pseudocode for getgpscoordinates.py

Import necessary modules for location services

Initialize a location manager to handle GPS services
Set the desired accuracy for the location data to about 100 meters

Request user authorization for accessing location services
Start updating the location

Define print_location function:
Continuously check if GPS coordinates are available
Once coordinates are available, retrieve latitude and longitude
Return a string containing the latitude and longitude

Main Program (for testing):
Print the current GPS coordinates using the print_location function

Pseudocode for texttospeech.py

Import necessary modules for text-to-speech conversion and audio playback

Define text_to_speech function:
Argument: message (a string to be converted to speech)
Initialize the audio playback system
Create a text-to-speech object with the given message and set the language to English
Save the spoken version of the message to a temporary audio file
Load the audio file into the playback system
Play the audio file
Wait until the audio playback is complete, checking periodically
Stop the audio playback and clean up the playback system
Return None

Main Program (for testing):
Prompt the user to enter a message
Call the text_to_speech function with the user's message

Inputs and Outputs

Inputs:

● Heartbeat Sensor: Monitors the user's heartbeat and detects significant
changes.

● Distance Sensor: Measures the distance between the user and obstacles.
● Button and Touchscreen: Allows user interaction and input.
● Acceleration Sensor: Detects sudden changes in acceleration, such as falls.
● GPS Tracker: Determines the device's location using GPS coordinates in

case of an emergency.
● Keyboard: Allows the set up of the menu.
● Light Sensor: Enables the user to utilize the "gesture2time" function.

Outputs:

● Speaker: Provides auditory output and voice prompts for the blind user.
● Buzzer: Emits audible alarms and warnings when there is an obstacle ahead

or in the case of an emergency.
● LED: Acts as an additional visual emergency signal.
● WhatsApp message to emergency contact

CircuIt Diagram
A circuit diagram is a graphical representation of an electrical circuit. The circuit diagram for
The Smart Blind Stick is shown in Figure 2.

Figure 2: circuit diagram for The Smart Blind Stick

Section 2 - Implementation

Our project focused on developing a multi-functional system with essential features in its
normal mode. These features are crucial for ensuring user safety and providing valuable
data insights.

Implementation of Key Features

Beeping System

1. Buzzer Functionality: The initial step involved writing code for the beeping system. We
developed a function to control the buzzer frequency, essential for alerting users (refer to
Figure 3).

Figure 3: relation between buzzer frequency and the distance between the ultrasonic sensor
and the obstacle

2. Ultrasonic Sensor Threshold: The threshold for the ultrasonic sensor was set at 30cm.
This value was chosen to avoid random and unpredictable outputs. The same principle
would apply if we upgraded to more sophisticated distance sensors.

Acceleration and Heart Rate Monitoring

1. Acceleration Threshold: We implemented code to measure the stick's acceleration (refer
to Figure 4). For testing purposes, we set a very low acceleration threshold to avoid dropping
the stick.

Figure 4: calculation of the magnitude of the acceleration

2. Heart Rate Data Handling: Obtaining accurate heart rate data was challenging due to
irregular values provided by the sensor. We applied a filtering process to normalize these
values. Subsequently, we established a range to distinguish between normal and abnormal
heart rates.

These steps were crucial in determining the conditions for activating the alarm mode, which
is triggered when a high acceleration or abnormal heart rate is detected..

Alarm Mode Functions

1. Alarm Mode Activation: The alarm mode comprises two primary functions: “alarm_mode”
and “last_check_before_alarm”.

2. Last Check Function: The “last_check_before_alarm” function provides a 5-second
window for the user to deactivate the alarm, thereby reducing false alarms. This was
implemented using a FOR-loop.

3. Alarm Notification: The alarm function sends an automatic WhatsApp message to an
emergency contact using the “pywhatkit” module. To ensure reliable message delivery, we
allotted ample time for this operation.

4. GPS Data Integration: The message includes the user's current GPS location, obtained
using the “CoreLocation” module. If GPS data isn't available, the system waits, thanks to an
implemented while loop.

Additional Features

1. Gesture2Time Feature: In the normal mode, we included the Gesture2Time feature. This
involved writing additional Python code and integrating it as a module.

2. Light Sensor for Time Announcement: The system announces the time when the user
hovers twice over the light sensor. The light threshold is refreshed every two minutes, and

the process is detailed in Figure 5. First, we attempted to incorporate this functionality using
a sound sensor and clapping twice to have the time read aloud. However, the sensor data
proved to be insufficient. The data collected from the sound sensor in a quiet room is
displayed in Figure 6. Despite being filtered, the data remains highly noisy.

Figure 5: Visual explanation of the algorithm behind the Gesture2Time feature

Figure 6: unusable noisy measurement data from the sound sensor: unfiltered data(green),
filtered data (red)

User Interface and Data Management

1. Menu Implementation: After ensuring the normal mode's functionality, we introduced a
menu interface.

2. User Data Storage: User data is stored in a dictionary, facilitating efficient data
management.

3. User Statistics Visualization: We utilized “matplotlib.pyplot” for generating bar diagrams to
display user statistics (refer Figure 7).

Figure 7: sample plot for the statistics

Text-to-Speech Feature

Finally, we implemented a Python code for text-to-speech functionality. This was achieved
with the assistance of ChatGPT (Version 3.5) and the use of the “gtts” and “pygame”
modules.

Section 3 - Testing

In this report section, we tested each Python file and confirmed that all code sections are
operating correctly, with observed outputs aligned with the expected output requirements.
Fortunately, we did not encounter any significant logical issues.

Testing for mainwithtxt.py

Action Expected Output Observed Output Comments

Press 1(Create a
new user) & enter
an username that
already exists

The program
should prompt the
user to enter
another username

Expected
Output ==
Observed
Output is True

Press 1(Create a
new user), enter a
new username &
enter an invalid
phone number

The program
should prompt the
user to enter a
valid phone
number

Expected
Output ==
Observed
Output is True

Press 1(Create a
new user), enter a
new username &
enter a valid phone
number

The program
should display a
message
indicating that the
account was
created, and
should go to
normal mode.

Expected
Output ==
Observed
Output is True

Press 2(Select an
existing user) and
press the touch
sensor directly

The program goes
to normal mode
automatically
activating the
beeping distance
sensor

Expected
Output ==
Observed
Output is True

Press 2(Select an
existing user) and
press enter first
and then press the
touch sensor

shows second
user and then
enters the normal
mode with this
user

Expected
Output ==
Observed
Output is True

Press 2(Select an
existing user) and
press enter over
and over again

prints the saved
users over and
over again

Expected
Output ==
Observed
Output is True

Press 3(show
statistics)

shows statistics
for each user in a
bar plot and also
reads the
statistics out loud

The code gives
“n” charts
depending on
the amounts of
users saved in
the text file.

Press 4(exit
programm)

programm ends Expected
Output ==
Observed
Output is True

Press something
else

the system says
that is an invalid
input and the user
is able to choose
between 1/2/3
and 4 again

Expected
Output ==
Observed
Output is True

Testing for normalmode.py

Action Expected Output Observed Output Comments

press touch sensor
and reduce the
distance to an object

A beeping sound
with a change of
frequency as you
get closer to the
obstacle

=Expected Output,
frequency increases

The distance is
short due to the
ultrasonic sensor's
maximum reliable
distance

press the button return back to menu Expected Output
== Observed
Output is True

do jumping jacks to
increase the heart
rate and do nothing

Check the user’s
wellbeing: alarm
mode activated

Expected Output
== Observed
Output is True

do jumping jacks to
increase the heart
rate and press the
button

Check the user’s
wellbeing: alarm
mode not activated

Expected Output
== Observed
Output is True

let the blind stick fall
to the ground and
do nothing

Check the user’s
wellbeing: alarm
mode activated

Expected Output
== Observed
Output is True

let the blind stick fall
to the ground and
press the button

Check the user’s
wellbeing: alarm
mode not activated

Expected Output
== Observed
Output is True

Testing for Light2time.py

Action Expected Output Observed Output Comments

cover the light
sensor completely

The system will
detect that it is
always dark,
therefore the
program should
not display the
time.

no time is
printed/read out
loud

Expected Output
== Observed
Output is True

hover over the
light sensor once

The program
should not print
anything, but the
system will send
out a second
pulse. However, no
detection will
occur.

no time is
printed/read out
loud

Expected Output
== Observed
Output is True

hover over the
light sensor twice
within 4 seconds

The time should
be printed and
read out loud

The time is printed
and read out loud

Expected Output
== Observed
Output is True

Testing for getgpscoordinates.py

Action Expected Output Observed Output Comments

Run the program
and put the GPS
coordinates into
https://gps-coordinat
es.org/

Current GPS
coordinates and our
current location on
the map

Expected Output
== Observed
Output is True

Testing for texttospeech.py

Action Expected Output Observed Output Comments

enter Hello world! read out loud ‘Hello
world’

The Program reads
“Hello World” to the
user.

Expected Output
== Observed
Output is True

enter ?! error because there
is no text

so we know that we
should only print
real sentences :)

https://gps-coordinates.org/
https://gps-coordinates.org/

Section 4 - Reflection and Conclusion

● Concepts Used:
○ Those are the general Concepts that we used in the project modules:

■ Importing Modules: The script imports gTTS from the gtts library
(Google Text-to-Speech) for text-to-speech conversion and pygame for
audio playback. This demonstrates the use of external libraries and
modules in Python.

■ Function Definition: The text_to_speech function is defined with a
docstring explaining its purpose, arguments, and return type. This is a
fundamental aspect of structured programming, promoting code
reuse and modularity.

■ Audio Playback: It utilizes pygame for audio playback, demonstrating
how to integrate multimedia elements into a Python program.

■ Control Flow: The script uses a while loop to check if the audio is still
playing (pygame.mixer.music.get_busy()). This introduces basic
control flow concepts.

■ Conditional Execution: The if __name__ == "__main__": block is used
to allow the script to be run as a standalone program or imported as a
module. This was used for testing.

● texttospeech.py: This script uses the “gTTS” (Google Text-to-Speech) library and
“pygame” for audio playback. Key concepts:

○ Library Usage: Demonstrates the use of external libraries (“gTTS”, “pygame”).
○ Function Definition: Defines a function “text_to_speech” to convert text into

speech.
○ Audio Playback: Using “pygame.mixer” to play audio.

● normalmode.py: This script integrates various modules and functionalities like
sending WhatsApp messages, getting GPS coordinates, and text-to-speech
conversion. Key concepts:

○ Module Integration: Importing and using functions from other scripts
(“texttospeech”, “getgpscoordinates”).

○ External Library Use: Utilizing “pywhatkit” for sending messages.
○ Function Calls: Invoking functions from imported modules.
○ Conditional Logic: Contains conditional structures for control flow.

● getgpscoordinates.py: This file handles GPS coordinate retrieval using the
“CoreLocation” module. Key concepts:

○ Location Services:Managing GPS services to retrieve coordinates.
● light2time.py: This script seems to read light levels and announce the time if certain

conditions are met. Key concepts:
○ Sensor Data Processing: Reading and processing data from a light sensor.
○ Conditional Statements: Using “if” statements to check light levels.
○ Time Handling: Utilizing the “time” module for handling time-related

functions.

● 5. mainwithtxt.py: This main script likely orchestrates the functionalities defined in
other modules. Key concepts:

○ Data Validation: Includes a function “is_valid_phonenumber” for validating
phone numbers.

○ Storing and handling data in a txt-File
○ Plotting: The using of “matplotlib.pyplot” indicates data visualization

capabilities.

● Modification/Changes to submitted Proposal:
○ Things we added:

■ The idea of presenting the statistics of the data of each user found in
the dictionary created by the JSON module.

■ Start up sound when entering the menu
■ Light2Time feature: The feature where the time is read out loud by

hovering over the light sensor twice.
○ Things we removed:

■ We had borrowed 2 UltraSonic sensors, but only one was working
properly. As a result, we could only detect obstacles approaching from
the front and had to abandon the overhead detection option.

● Personal Reflection:
○ As much work as this project needed, we were able to learn a lot not only

from the research we made but also from the mistakes we made.

○ Things we learned:
■ Due to the challenging nature of implementing this project, the most

valuable skill we acquired was problem-solving.
■ Programming necessitates a logical approach to ensure proper code

functionality. This endeavor enhanced our capacity to think in a
structured and methodical manner, resulting in improved logical
thinking abilities.

■ One of the most obvious experiences we have learned is
Programming Experience: This project has aided us a lot with getting
used to python as a programming language.

■ Group Work: Being part of a group is an intrinsic quality of the
workplace, and being able to work in harmony and know exactly what's
expected of you is something that we have really gained when working
on this project.

● Challenges we faced:
○ One of the biggest challenges we have faced was working with inaccurate

sensor readings
○ We implemented the part of saving the statistics to a txt file before working

on this part in the lectures, so we had to do a lot of research to be able to
implement this part of the project.

● Conclusion:
○ Project Aim and Achievement:

■ Developing a Smart Blind Stick to assist visually impaired individuals.
■ Successful implementation of functional code integrating sensors and

feedback systems for safe navigation.

If granted additional time and resources, the Smart Blind Stick could potentially be improved
with new features and functionalities:

● Connectivity: Increase communication options to send alerts through SMS for
broader accessibility and emergency contacts without the need for internet access.

● Mobility: Use a smaller device instead of a laptop or connect to a smartphone, for
example, via Bluetooth.

● Using better quality sensors that can enable us to have accurate readings, hence a
smoother functionality

